Kesebangunan dan Kekongruenan Bangun Datar adalah
Yaitu dua
bangun datar atau lebih dengan perbandingan panjang sisi yang senilai dan sudut
yang bersesuaian maka bangun datar tersebut sebangun . Jika dua atau lebih
bangun datar mempunyai bentuk dan ukuran yang sama dan mempunyai sudut yang
bersesuaian sama besar maka bangun datar tersebut kongruen.
Pernahkah kamu memperhatikan papan catur? Setiap petak satuan
pada papan catur, baik yang berwarna hitam maupun yang berwarna
putih, memiliki bentuk dan ukuran yang sama. Tahukah kamu, disebut
apakah bangun-bangun yang sama bentuk dan ukurannya? Untuk
menjawabnya, pelajarilah bab ini dengan baik.
A. Kesebangunan Bangun Datar
1. Kesebangunan Bangun Datar
Dalam kehidupan sehari-hari, pasti kamu pernah mendengar istilah
memperbesar atau memperkecil foto. Ketika kamu memperbesar (atau
memperkecil) foto, berubahkah bentuk gambarnya? Bentuk benda pada foto
mula-mula dengan foto yang telah diperbesar adalah sama, tetapi ukurannya
berlainan dengan perbandingan yang sama. Gambar benda pada foto mulamula dengan foto yang telah diperbesar merupakan contoh dua bangun yang
sebangun.
Sekarang, coba kamu perhatikan Gambar 1.1 . Sebangunkah persegipanjang ABCD dengan persegipanjang EFGH? Pada persegipanjang ABCD
dan persegipanjang EFGH, perbandingan panjangnya adalah 4 : 8 = 1 : 2.
Adapun perbandingan lebarnya adalah 2 : 4 = 1 : 2. Dengan demikian,
perbandingan sisi-sisi yang bersesuaian pada kedua persegipanjang tersebut
dapat dinyatakan sebagai berikut.
Kemudian, perhatikan sudut-sudut yang bersesuaian pada persegipanjang
ABCD dan persegipanjang EFGH. Oleh karena keduanya berbentuk
persegipanjang, setiap sudut besarnya 90° sehingga sudut-sudut yang
bersesuaian pada kedua bangun tersebut sama besar. Artinya kedua persegi -
panjang tersebut memiliki sisi-sisi yang bersesuaian dan sebanding sedangkan sudut-sudut yang bersesuaian sama besar. Oleh karena itu, persegipanjang
ABCD dan persegipanjang EFGH dikatakan sebangun.
Jadi, dua atau lebih bangun dikatakan sebangun jika memenuhi syaratsyarat sebagai berikut.
• Panjang sisi-sisi yang bersesuaian pada bangun-bangun tersebut
memiliki perbandingan yang senilai.
• sudut yang bersesuaian pada bangun-bangun tersebut Sudutsama besar.
Ini Contoh Soal & Jawaban
1. Di antara gambar-gambar berikut, manakah yang sebangun?
Jawab:
a. Perhatikan persegipanjang IJKL dan persegi MNOP.
(i) Perbandingan panjang sisi-sisi yang bersesuaian adalah
Jadi, sisi-sisi yang bersesuaian pada persegipanjang IJKL dan persegi
MNOP tidak sebanding.
(ii) Besar setiap sudut pada persegipanjang dan persegi adalah 90° sehingga
sudut-sudut yang bersesuaian pada persegipanjang IJKL dan persegi MNOP
sama besar
Dari (i) dan (ii) dapat disimpulkan bahwa persegipanjang IJKL dan persegi MNOP
tidak sebangun
b. Perhatikan persegi MNOP dan persegi QRST.
(i) Perbandingan panjang sisi-sisi yang bersesuaian adalah
Jadi, sisi-sisi yang bersesuaian pada persegi MNOP dan persegi QRST
sebanding.
(ii) Oleh karena bangun MNOP dan QRST berbentuk persegi, besar setiap
sudutnya 90˚ sehingga sudut-sudut yang bersesuaian pada kedua bangun
tersebut sama besar.
Dari (i) dan (ii) dapat disimpulkan bahwa persegi MNOP dan persegi QRST sebangun.
c. Dari jawaban a telah diketahui bahwa persegipanjang IJKL tidak sebangun
dengan persegi MNOP. Dengan demikian, persegipanjang IJKL juga tidak
sebangun dengan persegi QRST. Coba kamu jelaskan alasannya
2. Perhatikan gambar berikut.
Jika kedua bangun pada gambar tersebut sebangun, tentukan panjang QR.
Jawab:
Oleh karena persegipanjang ABCD dan persegipanjang PQRS sebangun, perbandingan
sisi-sisi yang bersesuaiannya sebanding.
Jadi, panjang QR adalah 3 cm.
3. Diketahui dua jajargenjang yang sebangun seperti gambar berikut.
Tentukan nilai x.
Jawab:
Perhatikan jajargenjang ABCD.
1B = D = 120°
1A = C = 180° − 120° = 60°
Oleh karena jajargenjang ABCD sebangun dengan jajargenjang EFGH, besar sudutsudut yang bersesuaiannya sama besar. Dengan demikian, 1 E =1=A = 60°.
Jadi, nilai x = 60˚
Hal Berikutnya
0 comments:
Post a Comment